超详细Netty入门,看这篇就够了

本文主要讲述Netty框架的一些特性以及重要组件,希望看完之后能对Netty框架有一个比较直观的感受,希望能帮助读者快速入门Netty,减少一些弯路。

官方的介绍:

Netty is an asynchronous event-driven network application frameworkfor rapid development of maintainable high performance protocol servers & clients.

Netty是 一个异步事件驱动的网络应用程序框架,用于快速开发可维护的高性能协议服务器和客户端

从官网上介绍,Netty是一个网络应用程序框架,开发服务器和客户端。也就是用于网络编程的一个框架。既然是网络编程,Socket就不谈了,为什么不用NIO呢?

2.1 NIO的缺点

对于这个问题,之前我写了一篇文章《NIO入门》对NIO有比较详细的介绍,NIO的主要问题是:

  • NIO的类库和API繁杂,学习成本高,你需要熟练掌握Selector、ServerSocketChannel、SocketChannel、ByteBuffer等。
  • 需要熟悉Java多线程编程。这是因为NIO编程涉及到Reactor模式,你必须对多线程和网络编程非常熟悉,才能写出高质量的NIO程序。
  • 臭名昭著的epoll bug。它会导致Selector空轮询,最终导致CPU 100%。直到JDK1.7版本依然没得到根本性的解决。

2.2 Netty的优点

相对地,Netty的优点有很多:

  • API使用简单,学习成本低。
  • 功能强大,内置了多种解码编码器,支持多种协议。
  • 性能高,对比其他主流的NIO框架,Netty的性能最优。
  • 社区活跃,发现BUG会及时修复,迭代版本周期短,不断加入新的功能。
  • Dubbo、Elasticsearch都采用了Netty,质量得到验证。

上面这张图就是在官网首页的架构图,我们从上到下分析一下。

绿色的部分Core核心模块,包括零拷贝、API库、可扩展的事件模型。

橙色部分Protocol Support协议支持,包括Http协议、webSocket、SSL(安全套接字协议)、谷歌Protobuf协议、zlib/gzip压缩与解压缩、Large File Transfer大文件传输等等。

红色的部分Transport Services传输服务,包括Socket、Datagram、Http Tunnel等等。

以上可看出Netty的功能、协议、传输方式都比较全,比较强大。

首先搭建一个HelloWord工程,先熟悉一下API,还有为后面的学习做铺垫。以下面这张图为依据:

4.1 引入Maven依赖

使用的版本是4.1.20,相对比较稳定的一个版本。

4.2 创建服务端启动类

4.3 创建服务端处理器

4.4 创建客户端启动类

4.5 创建客户端处理器

4.6 测试

先启动服务端,再启动客户端,就可以看到结果:

MyServer打印结果:

MyClient打印结果:

5.1 taskQueue任务队列

如果Handler处理器有一些长时间的业务处理,可以交给taskQueue异步处理。怎么用呢,请看代码演示:

我们打一个debug调试,是可以看到添加进去的taskQueue有一个任务。

5.2 scheduleTaskQueue延时任务队列

延时任务队列和上面介绍的任务队列非常相似,只是多了一个可延迟一定时间再执行的设置,请看代码演示:

依然打开debug进行调试查看,我们可以有一个scheduleTaskQueue任务待执行中

5.3 Future异步机制

在搭建HelloWord工程的时候,我们看到有一行这样的代码:

很多操作都返回这个ChannelFuture对象,究竟这个ChannelFuture对象是用来做什么的呢?

ChannelFuture提供操作完成时一种异步通知的方式。一般在Socket编程中,等待响应结果都是同步阻塞的,而Netty则不会造成阻塞,因为ChannelFuture是采取类似观察者模式的形式进行获取结果。请看一段代码演示:

5.4 Bootstrap与ServerBootStrap

Bootstrap和ServerBootStrap是Netty提供的一个创建客户端和服务端启动器的工厂类,使用这个工厂类非常便利地创建启动类,根据上面的一些例子,其实也看得出来能大大地减少了开发的难度。首先看一个类图:

可以看出都是继承于AbstractBootStrap抽象类,所以大致上的配置方法都相同。

一般来说,使用Bootstrap创建启动器的步骤可分为以下几步:

5.4.1 group()

在上一篇文章《Reactor模式》中,我们就讲过服务端要使用两个线程组:

  • bossGroup 用于监听客户端连接,专门负责与客户端创建连接,并把连接注册到workerGroup的Selector中。
  • workerGroup用于处理每一个连接发生的读写事件。

一般创建线程组直接使用以下new就完事了:

有点好奇的是,既然是线程组,那线程数默认是多少呢?深入源码:

通过源码可以看到,默认的线程数是cpu核数的两倍。假设想自定义线程数,可以使用有参构造器:

5.4.2 channel()

这个方法用于设置通道类型,当建立连接后,会根据这个设置创建对应的Channel实例。

使用debug模式可以看到

通道类型有以下:

NioSocketChannel: 异步非阻塞的客户端 TCP Socket 连接。

NioServerSocketChannel: 异步非阻塞的服务器端 TCP Socket 连接。

常用的就是这两个通道类型,因为是异步非阻塞的。所以是首选。

OioSocketChannel: 同步阻塞的客户端 TCP Socket 连接。

OioServerSocketChannel: 同步阻塞的服务器端 TCP Socket 连接。

稍微在本地调试过,用起来和Nio有一些不同,是阻塞的,所以API调用也不一样。因为是阻塞的IO,几乎没什么人会选择使用Oio,所以也很难找到例子。我稍微琢磨了一下,经过几次报错之后,总算调通了。代码如下:

NioSctpChannel: 异步的客户端 Sctp(Stream Control Transmission Protocol,流控制传输协议)连接。

NioSctpServerChannel: 异步的 Sctp 服务器端连接。

本地没启动成功,网上看了一些网友的评论,说是只能在linux环境下才可以启动。从报错信息看:SCTP not supported on this platform,不支持这个平台。因为我电脑是window系统,所以网友说的有点道理。

5.4.3 option()与childOption()

首先说一下这两个的区别。

option()设置的是服务端用于接收进来的连接,也就是boosGroup线程。

childOption()是提供给父管道接收到的连接,也就是workerGroup线程。

搞清楚了之后,我们看一下常用的一些设置有哪些:

SocketChannel参数,也就是childOption()常用的参数:

SO_RCVBUF Socket参数,TCP数据接收缓冲区大小。TCP_NODELAY TCP参数,立即发送数据,默认值为Ture。SO_KEEPALIVE Socket参数,连接保活,默认值为False。启用该功能时,TCP会主动探测空闲连接的有效性。

ServerSocketChannel参数,也就是option()常用参数:

SO_BACKLOG Socket参数,服务端接受连接的队列长度,如果队列已满,客户端连接将被拒绝。默认值,Windows为200,其他为128。

由于篇幅限制,其他就不列举了,大家可以去网上找资料看看,了解一下。

5.4.4 设置流水线(重点)

ChannelPipeline是Netty处理请求的责任链,ChannelHandler则是具体处理请求的处理器。实际上每一个channel都有一个处理器的流水线。

在Bootstrap中childHandler()方法需要初始化通道,实例化一个ChannelInitializer,这时候需要重写initChannel()初始化通道的方法,装配流水线就是在这个地方进行。代码演示如下:

处理器Handler主要分为两种:

ChannelInboundHandlerAdapter(入站处理器)、ChannelOutboundHandler(出站处理器)

入站指的是数据从底层java NIO Channel到Netty的Channel。

出站指的是通过Netty的Channel来操作底层的java NIO Channel。

ChannelInboundHandlerAdapter处理器常用的事件有

  1. 注册事件 fireChannelRegistered。
  2. 连接建立事件 fireChannelActive。
  3. 读事件和读完成事件 fireChannelRead、fireChannelReadComplete。
  4. 异常通知事件 fireExceptionCaught。
  5. 用户自定义事件 fireUserEventTriggered。
  6. Channel 可写状态变化事件 fireChannelWritabilityChanged。
  7. 连接关闭事件 fireChannelInactive。

ChannelOutboundHandler处理器常用的事件有

  1. 端口绑定 bind。
  2. 连接服务端 connect。
  3. 写事件 write。
  4. 刷新时间 flush。
  5. 读事件 read。
  6. 主动断开连接 disconnect。
  7. 关闭 channel 事件 close。

还有一个类似的handler(),主要用于装配parent通道,也就是bossGroup线程。一般情况下,都用不上这个方法。

5.4.5 bind()

提供用于服务端或者客户端绑定服务器地址和端口号,默认是异步启动。如果加上sync()方法则是同步。

有五个同名的重载方法,作用都是用于绑定地址端口号。不一一介绍了。

5.4.6 优雅地关闭EventLoopGroup

会关闭所有的child Channel。关闭之后,释放掉底层的资源。

5.5 Channel

Channel是什么?不妨看一下官方文档的说明:

A nexus to a network socket or a component which is capable of I/O operations such as read, write, connect, and bind

翻译大意:一种连接到网络套接字或能进行读、写、连接和绑定等I/O操作的组件。

如果上面这段说明比较抽象,下面还有一段说明:

A channel provides a user:

the current state of the channel (e.g. is it open? is it connected?),the configuration parameters of the channel (e.g. receive buffer size),the I/O operations that the channel supports (e.g. read, write, connect, and bind), andthe ChannelPipeline which handles all I/O events and requests associated with the channel.

翻译大意:

channel为用户提供:

  1. 通道当前的状态(例如它是打开?还是已连接?)
  2. channel的配置参数(例如接收缓冲区的大小)
  3. channel支持的IO操作(例如读、写、连接和绑定),以及处理与channel相关联的所有IO事件和请求的ChannelPipeline。

5.5.1 获取channel的状态

以上就是获取channel的四种状态的方法。

5.5.2 获取channel的配置参数

获取单条配置信息,使用getOption(),代码演示:

获取多条配置信息,使用getOptions(),代码演示:

5.5.3 channel支持的IO操作

写操作,这里演示从服务端写消息发送到客户端:

客户端控制台:

连接操作,代码演示:

通过channel获取ChannelPipeline,并做相关的处理:

5.6 Selector

在NioEventLoop中,有一个成员变量selector,这是nio包的Selector,在之前《NIO入门》中,我已经讲过Selector了。

Netty中的Selector也和NIO的Selector是一样的,就是用于监听事件,管理注册到Selector中的channel,实现多路复用器。

5.7 PiPeline与ChannelPipeline

在前面介绍Channel时,我们知道可以在channel中装配ChannelHandler流水线处理器,那一个channel不可能只有一个channelHandler处理器,肯定是有很多的,既然是很多channelHandler在一个流水线工作,肯定是有顺序的。

于是pipeline就出现了,pipeline相当于处理器的容器。初始化channel时,把channelHandler按顺序装在pipeline中,就可以实现按序执行channelHandler了。

在一个Channel中,只有一个ChannelPipeline。该pipeline在Channel被创建的时候创建。ChannelPipeline包含了一个ChannelHander形成的列表,且所有ChannelHandler都会注册到ChannelPipeline中。

5.8 ChannelHandlerContext

在Netty中,Handler处理器是有我们定义的,上面讲过通过集成入站处理器或者出站处理器实现。这时如果我们想在Handler中获取pipeline对象,或者channel对象,怎么获取呢。

于是Netty设计了这个ChannelHandlerContext上下文对象,就可以拿到channel、pipeline等对象,就可以进行读写等操作。

通过类图,ChannelHandlerContext是一个接口,下面有三个实现类。

实际上ChannelHandlerContext在pipeline中是一个链表的形式。看一段源码就明白了:

下面我用一张图来表示,会更加清晰一点:

5.9 EventLoopGroup

我们先看一下EventLoopGroup的类图:

其中包括了常用的实现类NioEventLoopGroup。OioEventLoopGroup在前面的例子中也有使用过。

从Netty的架构图中,可以知道服务器是需要两个线程组进行配合工作的,而这个线程组的接口就是EventLoopGroup。

每个EventLoopGroup里包括一个或多个EventLoop,每个EventLoop中维护一个Selector实例。

5.9.1 轮询机制的实现原理

我们不妨看一段DefaultEventExecutorChooserFactory的源码:

这段代码可以确定执行的方式是轮询机制,接下来debug调试一下:

它这里还有一个判断,如果线程数不是2的N次方,则采用取模算法实现。

能力有限,如果有什么错误或者不当之处,请大家批评指正,一起学习交流!

本文为阿里云原创内容,未经允许不得转载。

彻夜怒肝!熬夜整理13个Java基础实例,程序员的辛苦钱建议不要赚

今日分享开始啦,请大家多多指教~

Java代码实现是比较基础的内容,今天给大家介绍几个题目训练,自己可以动手操作实现一下哦!

题目内容:根据年龄, 来打印出当前年龄的人是少年(低于18), 青年(19-28), 中年(29-55), 老年(56以上)

Java代码实现

编译效果:

我们输入一个数值的大小,程序会打印出对应的年龄段.

题目内容:打印1-100之间存在的素数

Java代码实现

编译效果:

注意点:打印出1-100之间的素数,我们用的是较为简单的做法,还可以更加方便地求解,比如i++ –> i+=2,偶数不可能是素数。还可以将j的范围缩小到 i/2 或者 i开平方.

题目内容:输入一个数字判断是否是素数

Java代码实现:

编译效果:

注意点:同上

题目内容:输出 1000 – 2000 之间所有的闰年

Java代码实现:

编译效果:

题目内容:输出9*9乘法口诀表

Java代码实现:

编译效果:

注意点:格式化输出,我们可以采用C语言中printf函数的格式.

题目内容:输入两个正整数,输出他们的最大公约数

Java代码实现:

编译效果:

注意点:我们做题时用到了辗转相除法

题目内容:计算1/1-1/2+1/3-1/4+1/5 …… + 1/99 – 1/100 的值。

Java代码实现:

编译效果:

注意点: sum += ( flag ) * ( 1.0 / i) ;这里一定要明确 是1.0 / i ,不是1 / i.另外sum要定义成double类型.

题目内容:编写程序数一下 1到 100 的所有整数中出现多少个数字9

编译效果:

注意点:99中9出现了两次,所以我们用两个if语句,分别对含有9的数字中9的个数进行计数.

题目内容:

求出0~999之间的所有“水仙花数”并输出。

水仙花数”是指一个三位数,其各位数字的立方和确好等于该数本身,如:153=1+5+3?,则153是一个“水仙花数.

Java代码实现:

编译效果:

思考步骤:

1.算出该数字有多少位

2.将该数字的每一位数字得到,算出每一位数字的次方的和

3.比较结果与原数字是否相等

题目内容:

最多能输入三次密码,密码正确,提示“登录成功”,密码错误可以重新输入.

最多输入三次。三次均错,则提示退出程序

Java代码实现:

编译效果:

注意点:equals() 比较字符串的功能.

题目内容:写一个函数返回参数二进制中 1 的个数 比如: 15 0000 1111 4 个 1Java代码实现:

编译效果:

注意点: 明确位操作符& 的作用,二进制的每一位 &1,都可以得到这一位上的数字

题目内容:获取一个数二进制序列中所有的偶数位和奇数位, 分别输出二进制序列。

Java实现代码:

编译效果:

注意点:这是练习十二的拓展,我们根据二进制数列的奇偶位进行取位.

题目内容:我们实现简单的猜数字游戏,由电脑随机生成100以内的数字,我们进行猜测,直到猜对为止,程序退出。

Java代码实现:

编译效果:

好了,我们Java基础题目的分享就到这里结束了,希望大家多多练习。

小结:

其实我想说,Java基础真心很重要,巩固核心基础是重点也是核心,万丈高楼平地起,没有稳定的地基,修高楼最后结果也是会倒塌的,所以工作之余多多提升下技术,研究下基础技术设计的思想和初衷,别在埋头苦干做一个名“实干家了”!

今日份分享已结束,请大家多多包涵和指点!

本文作者及来源:Renderbus瑞云渲染农场https://www.renderbus.com

点赞 0
收藏 0

文章为作者独立观点不代本网立场,未经允许不得转载。