初一到高三年级所有 三角函数公式大全,赶快分享给小伙伴吧!
三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是为大家整理的三角函数公式大全
锐角三角函数公式
sin α=∠α的对边 / 斜边
cos α=∠α的邻边 / 斜边
tan α=∠α的对边 / ∠α的邻边
cot α=∠α的邻边 / ∠α的对边
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2 是sinA的平方 sin2(A) )
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
三倍角公式推导
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
辅助角公式
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
推导公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
=2sina(1-sin²a)+(1-2sin²a)sina
=3sina-4sin³a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos²a-1)cosa-2(1-sin²a)cosa
=4cos³a-3cosa
sin3a=3sina-4sin³a
=4sina(3/4-sin²a)
=4sina[(√3/2)²-sin²a]
=4sina(sin²60°-sin²a)
=4sina(sin60°+sina)(sin60°-sina)
=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a=4cos³a-3cosa
=4cosa(cos²a-3/4)
=4cosa[cos²a-(√3/2)²]
=4cosa(cos²a-cos²30°)
=4cosa(cosa+cos30°)(cosa-cos30°)
=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述两式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
两角和差
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
和差化积
sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
积化和差
sinαsinβ = [cos(α-β)-cos(α+β)] /2
cosαcosβ = [cos(α+β)+cos(α-β)]/2
sinαcosβ = [sin(α+β)+sin(α-β)]/2
cosαsinβ = [sin(α+β)-sin(α-β)]/2
诱导公式
sin(-α) = -sinα
cos(-α) = cosα
tan (—a)=-tanα
sin(π/2-α) = cosα
cos(π/2-α) = sinα
sin(π/2+α) = cosα
cos(π/2+α) = -sinα
sin(π-α) = sinα
cos(π-α) = -cosα
sin(π+α) = -sinα
cos(π+α) = -cosα
tanA= sinA/cosA
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
诱导公式记背诀窍:奇变偶不变,符号看象限
万能公式
sinα=2tan(α/2)/[1+tan^(α/2)]
cosα=[1-tan^(α/2)]/1+tan^(α/2)]
tanα=2tan(α/2)/[1-tan^(α/2)]
其它公式
(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可
(4)对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC
证:
A+B=π-C
tan(A+B)=tan(π-C)
(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
得证
同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
奇速达成,受益一生。
兴趣+习惯+方法,帮您孩子解决学习问题,让孩子掌握英语高效学习法。
亲爱的家长朋友们,如果您正在为孩子的以下问题操心:粗心马虎、厌学、勤奋但是成绩提不高…..
那么请加QQ:757722345或关注我们的微信公众号:qisuen
三角函数诱导公式表格汇总,分类归纳有利于系统掌握,这点很重要
三角函数的诱导公式一共有54个,其中绝大多数公式又有角度制和弧度制两种表达形式,将这些公式分为六组,每组中的公式具有类似的规律。通过分类归纳,有利于更系统地掌握这些诱导公式。不管是哪一组公式,都要先设一个任意角度α,围绕着这个α来表示这些公式。以下以弧度制为例,介绍各组公式的详情。
第一组公式完全就是周期性的运用,因为常用的三角函数有相同的周期2kπ(k为任意整数),但2kπ未必是唯一的周期。不过根据周期函数的定义,都有:
sin(2kπ+α)=sinα;cos(2kπ+α)=cosα;tan(2kπ+α)=tanα;cot(2kπ+α)=cotα;sec(2kπ+α)=secα;csc(2kπ+α)=cscα。(k∈Z)
在几何意义上,第一组公式表示终边相同的角,三角函数值都相等。
第二组公式是π+α的三角函数值与α的三角函数值之间的关系。
一方面正切和余切都以π为最小正周期,所以tan(π+α)=tanα;cot(π+α)=cotα。
另一方面由正弦函数和余弦函数的定义公式,以及它们在坐标平面上的意义,可以推知sin(π+α)=-sinα;cos(π+α)=-cosα,又由正割与余弦的互为倒数关系,以及余割与正弦的互为倒数关系,就可以知道sec(π+α)=-secα;csc(π+α)=-cscα。
在几何意义上,第二组公式表示终边形成平角的两个角的三角函数关系。
第三组公式是互为相反的两个角的三角函数值的关系。由正弦、正切、余切和余割的奇函数性质,以及余弦、正割的偶函数性质,有:
sin(-α)=-sinα;cos(-α)=cosα;tan(-α)=-tanα;cot(-α)=-cotα;sec(-α)=secα;csc(-α)=-cscα.
在几何意义上,第三组公式表示终边关于始边对称的两个角的三角函数关系。
第四组公式是π-α和α的三角函数值之间的关系,由第三组公式结合第二组公式推得,即:
sin(π-α)=sinα;cos(π-α)=-cosα;tan(π-α)=-tanα;cot(π-α)=-cotα;sec(π-α)=-secα;csc(π-α)=cscα.
在几何意义上,第四组公式表示互补的两个角的三角函数关系。
第五组公式是2π-α和α的三角函数值之间的关系,由第一组公式和第三组公式推得,即
sin(2π-α)=sin(-α)=-sinα;cos(2π-α)=cos(-α)=cosα;tan(2π-α)=tan(-α)=-tanα;cot(2π-α)=cot(-α)=-cotα;sec(2π-α)=sec(-α)=secα;csc(2π-α)=csc(-α)=-cscα.
在几何意义上,第五组公式表示两个角的和是周角时,两者的三角函数关系。
最后一组公式是π/2±α 以及3π/2±α与α的三角函数值之间的关系,很明显,这里面又可以分成四种情况:
(1)π/2-α 与α的三角函数值之间的关系:由三角函数最原始的定义,在直角三角形中,两个锐角的三角函数有如下关系:
sin(π/2-α)=cosα;cos(π/2-α)=sinα;tan(π/2-α)=cotα;cot(π/2-α)=tanα;sec(π/2-α)=cscα;csc(π/2-α)=secα.
如果认为钝角的余角是负角度的话,那么它们表示互余的两个角的三角函数关系。(不过一般认为钝角没有余角)
(2)π/2+α 与α的三角函数值之间的关系,由公式(1)结合第四组公式推得,即:
sin(π/2+α)=cosα;cos(π/2+α)=-sinα;tan(π/2+α)=-cotα;cot(π/2+α)=-tanα; sec(π/2+α)=-cscα;csc(π/2+α)=secα.
在几何意义上,表示终边互相垂直的两个角的三角函数关系:(终边互相垂直有两种情形)
(3)3π/2-α与α的三角函数值之间的关系,由公式(1)结合第二组公式推得,即:
sin(3π/2-α)=-cosα;cos(3π/2-α)=-sinα;tan(3π/2-α)=cotα;cot(3π/2-α)=tanα;sec(3π/2-α)=-cscα;csc(3π/2-α)=-secα.
在几何意义上,表示终边关于y=-x对称的两个角的三角函数关系:
(4)3π/2+α与α的三角函数值之间的关系,由公式(2)结合第二组公式推得,即:
sin(3π/2+α)=-cosα;cos(3π/2+α)=sinα;tan(3π/2+α)=-cotα;cot(3π/2+α)=-tanα;sec(3π/2+α)=cscα;csc(3π/2+α)=-secα.
在几何意义上,表示终边互相垂直的两个角的三角函数关系的另一种情形:
最后把这些诱导公式全部归纳成表格如下:
这个表格包括行标题:组别,弦度,以及对应的六种常用三角函数。列标题是组别序号,副标题是各弧度。按照第一行第一列是sinα算起,如果要知道cos(2π-α)对应的诱导公式,就找到第五行第二列对应α的三角函数,这个函数是cosα,因此cos(2π-α)=cosα。把表设计成这种形式,会更简洁,且便于查阅。
本文作者及来源:Renderbus瑞云渲染农场https://www.renderbus.com
文章为作者独立观点不代本网立场,未经允许不得转载。