5分钟学懂指数函数和对数函数

同学们好,我是李状元数学课的李老师,讲人人都听得懂的高中数学课。

今天这节课我们来看指数函数和对数函数。

在教学中我发现有一些同学对这两个函数望而生畏。但老师毫不夸张地说,这两个函数是整个高中阶段性质最简单、解法最常规的一种函数。大家学完今天这堂课就不怵它了。

为什么说是一种函数?因为指数函数和对数函数从定义到性质都是对应的,完全可以放在一起理解。

指数函数的解析式是y=a^x,如果把这个式子里的x和y互换一下,得到x=a^y,把y变换到等式左边,按照对数运算的定义,就变成了y=log(a)x.

不论对于指数函数还是对数函数,解析式中的参数a我们都有个规定的范围,就是a>0且a≠1.那么a就有两种情况,0<a<1或者a>1.

下面先看一下指数函数y=a^x.它的定义域是全体实数,而值域是0到正无穷。

从函数性质看,指数函数是非奇非偶函数,也没有对称性和周期性。它最重要的性质就是单调性。

a>1时在R上单调递增;0<a<1时单调递减。

指数函数还有几个要点:

  1. 图像以x轴为渐近线,意思就是无限趋近于x轴但不越过;
  2. 不管a的具体值是多少,a既然不为0,a的零次方都是1,所以任何一个指数函数的图像都经过点(0, 1),另外还经过一个点(1, a),也比较常用到。

当然,这两个点其实都是根据函数解析式能直接得到的,并不需要特别去记住。

注意,这里说的都是标准的指数函数,也就是符合解析式是y=a^x的函数,而不是经过图像变换(比如平移或伸缩)以后的指数函数的图像。

再来看对数函数时就能对应上了。首先对数函数的定义域、值域是和指数函数反过来的,对数函数y=log(a)x的定义域是0到正无穷,而值域是全体实数。

对数函数的定义域是正实数集,按照我们一直强调的“定义域优先”的原则,这个要特别注意。

单调性上,对数函数和指数函数是类似的,a>1时在定义域上单调递增;0<a<1时单调递减。

对数函数图像以y轴为渐近线,意思就是无限趋近于y轴但不越过;对数函数的图像都经过点(1, 0)和点(a, 1).

对指数函数和对数函数而言,最重要的就是单调性了,a>1时在R上单调递增;0<a<1时单调递减。我们常用函数单调性来比较指数或对数形式的数的大小。

数学学习 | 高中数学知识点:指数函数解析与讲解!(值得学习)

全文共977字,预计阅读时间:3分钟

上周,我们复习了整数指数幂,并学习了分数指数幂和无理数指数幂,并将指数的取值范围扩展到了实数,在了解了指数的相关基础知识之后,我们就要开始学习指数函数了!

今天,我们将学习一下基本函数 – 指数函数的概念、图像与性质,快来学习一下吧!

上一章,我们学习了幂函数,与幂函数相同的,指数函数也是一个基本函数。

指数函数是指函数形式为指数形式的函数,其中指数为自变量,而底数是一个大于0且不等于1的常数,其定义为:

与学习幂函数类似的,我们学习一个基本函数时都需要了解其图像和性质,那么接下来我们将借助图像来分析一下指数函数的性质吧!

由于指数函数的底数应为一个大于0且不等于1的常数,那么我们将在(0,1)和(1,+∞)中分别取特殊值来进行解析。

首先,我们指定指数函数的底数为2和1/2,我们可以得到两个指数函数,分别是y=2^x和y=2^(-x),它们的图像为:

通过这两个函数图像,我们可以发现,这两个函数图像是关于y轴对称的,那么也就是说,当我们知道其中一个函数图像时,就可以根据对称性得到另一个函数的图像和对应性质。

这种对称性是指针对y=2^x和y=2^(-x)这两个函数吗,还是具有普适意义呢?

那么我们将在取两组底数进行一下分析,分别取3和1/3以及4和1/4,它们的图像为:

由此,我们发现,对于(0,1)和(1,+∞)这两个范围内的底数,指数函数的图像确实具有关于y轴的对称性,同学们利用这一性质可以进行一定的解题。

根据对称性,我们发现,当底数取在(0,1)中时,指数函数是一个减函数,当底数取在(1,+∞)中时,指数函数是一个增函数。

除了对称性之外,我们还可以发现,指数函数的图像只出现在x轴上方,也就是说,无论指数函数的底数为何值,指数函数的值域都是(0,+∞)。

通过观察上面6个指数函数的图像,我们可以发现,所有指数函数都会过一个点,那就是(0,1)点,这是因为指数幂有一个运算性质为: a^0=1, (a≠0)。

综上,我们可以将指数函数的图像和性质总结为:

今天,我们学习了指数函数的概念、图像和性质,希望可以帮助同学们更好地进行高中数学学习哦!

同学们有任何不懂的内容可以留言提问,如果有需要的话我们会有习题类推文哦!

下一期我们将继续讨论数学学习的相关问题呀!如果你想知道更多,请关注我们哦!

本文由如意王工作室原创,欢迎关注,带你一起长知识!

本文作者及来源:Renderbus瑞云渲染农场https://www.renderbus.com

点赞 0
收藏 0

文章为作者独立观点不代本网立场,未经允许不得转载。