数学学习 | 高中数学知识点:指数函数解析与讲解!(值得学习)

全文共977字,预计阅读时间:3分钟

上周,我们复习了整数指数幂,并学习了分数指数幂和无理数指数幂,并将指数的取值范围扩展到了实数,在了解了指数的相关基础知识之后,我们就要开始学习指数函数了!

今天,我们将学习一下基本函数 – 指数函数的概念、图像与性质,快来学习一下吧!

上一章,我们学习了幂函数,与幂函数相同的,指数函数也是一个基本函数。

指数函数是指函数形式为指数形式的函数,其中指数为自变量,而底数是一个大于0且不等于1的常数,其定义为:

与学习幂函数类似的,我们学习一个基本函数时都需要了解其图像和性质,那么接下来我们将借助图像来分析一下指数函数的性质吧!

由于指数函数的底数应为一个大于0且不等于1的常数,那么我们将在(0,1)和(1,+∞)中分别取特殊值来进行解析。

首先,我们指定指数函数的底数为2和1/2,我们可以得到两个指数函数,分别是y=2^x和y=2^(-x),它们的图像为:

通过这两个函数图像,我们可以发现,这两个函数图像是关于y轴对称的,那么也就是说,当我们知道其中一个函数图像时,就可以根据对称性得到另一个函数的图像和对应性质。

这种对称性是指针对y=2^x和y=2^(-x)这两个函数吗,还是具有普适意义呢?

那么我们将在取两组底数进行一下分析,分别取3和1/3以及4和1/4,它们的图像为:

由此,我们发现,对于(0,1)和(1,+∞)这两个范围内的底数,指数函数的图像确实具有关于y轴的对称性,同学们利用这一性质可以进行一定的解题。

根据对称性,我们发现,当底数取在(0,1)中时,指数函数是一个减函数,当底数取在(1,+∞)中时,指数函数是一个增函数。

除了对称性之外,我们还可以发现,指数函数的图像只出现在x轴上方,也就是说,无论指数函数的底数为何值,指数函数的值域都是(0,+∞)。

通过观察上面6个指数函数的图像,我们可以发现,所有指数函数都会过一个点,那就是(0,1)点,这是因为指数幂有一个运算性质为: a^0=1, (a≠0)。

综上,我们可以将指数函数的图像和性质总结为:

今天,我们学习了指数函数的概念、图像和性质,希望可以帮助同学们更好地进行高中数学学习哦!

同学们有任何不懂的内容可以留言提问,如果有需要的话我们会有习题类推文哦!

下一期我们将继续讨论数学学习的相关问题呀!如果你想知道更多,请关注我们哦!

本文由如意王工作室原创,欢迎关注,带你一起长知识!

必修一——指数函数以及性质

一、前言(废话)

之前已经学习了指数与指数幂的运算,以及相关的指数运算性质(如果有不懂的读者,可以往前面去翻看一下),今日作者正式就开始讲指数函数以及相关的性质。

二、指数函数

指数函数其实就是之前学习的一个推广,当底数大于零,可以将指数的取值范围从指数推广到了实数,这就形成了指数函数的形成,对此只有看数学界的定义了。

在此之前有两个前提:

  1. 指数函数的底数大于零。
  2. 指数函数的底数不能等于一。

数学界指数函数的定义:

一般地,函数

编辑 搜图

请点击输入图片描述

只要形式上,符合上图的函数形式,则这种函数就是叫做指数函数。其中x是自变量,并且函数的定义域是R。

三、指数函数的性质

由指数函数的形式可以得出,指数函数的底数要求大于零,并且不等于一,这就让定义域划分为了两部分:

由于底数的取值范围,造就了两个区间,因此当底数0<a<1时,函数是一个单调递减的函数,当底数a>1时,函数是一个单调递增的函数。

以其中的a>1作为讨论,指数函数也是函数,既然是函数就按照函数的相关性质进行讨论,在这之前要先说明指数函数的定义域: x∈R

  1. 指数函数的第一个性质就是单调性,由图可知,指数函数的单调性由a的取值范围决定的,当a>1时,指数函数是单调递增函数,当0<a<1时,指数函数是单调递减函数。
  2. 函数第二个性质就是奇偶性,但从图像上看,并没有奇偶性,就不讨论了。
  3. 函数第三个性质就是周期性,同理,从图像上看,也是没有周期性,也不做讨论了。
  4. 函数第四个性质就是对称性,从图像上看,也没有对称性,也就不讨论了。

这就是从函数的性质上面进行讨论的,除此之外就需要从指数函数自身的性质进行讨论了。

  1. 指数函数的所有的图像都过一个定点(0,1),即x=0时,y=1
  2. 第二个专属性质就是单调性由a的取值范围决定的。

批注:

读者有什么不懂的可以留言,想要知道什么高中解题经验可以给作者留言啊!

关注!关注!关注!重要事情说三遍

高中数学难?一文终于讲清指数函数及指数运算20个知识点解题攻略

20多页就可以系统掌握好高一数学指数函数及指数运算20个知识点及16大考题攻略,班上学生8小时就可以全部吃透了,数学成绩不低于133分,附加对应典例题型解析版,高中家长建议打印!

本文作者及来源:Renderbus瑞云渲染农场https://www.renderbus.com

点赞 0
收藏 0

文章为作者独立观点不代本网立场,未经允许不得转载。