必修一——指数函数以及性质

一、前言(废话)

之前已经学习了指数与指数幂的运算,以及相关的指数运算性质(如果有不懂的读者,可以往前面去翻看一下),今日作者正式就开始讲指数函数以及相关的性质。

二、指数函数

指数函数其实就是之前学习的一个推广,当底数大于零,可以将指数的取值范围从指数推广到了实数,这就形成了指数函数的形成,对此只有看数学界的定义了。

在此之前有两个前提:

  1. 指数函数的底数大于零。
  2. 指数函数的底数不能等于一。

数学界指数函数的定义:

一般地,函数

编辑 搜图

请点击输入图片描述

只要形式上,符合上图的函数形式,则这种函数就是叫做指数函数。其中x是自变量,并且函数的定义域是R。

三、指数函数的性质

由指数函数的形式可以得出,指数函数的底数要求大于零,并且不等于一,这就让定义域划分为了两部分:

由于底数的取值范围,造就了两个区间,因此当底数0<a<1时,函数是一个单调递减的函数,当底数a>1时,函数是一个单调递增的函数。

以其中的a>1作为讨论,指数函数也是函数,既然是函数就按照函数的相关性质进行讨论,在这之前要先说明指数函数的定义域: x∈R

  1. 指数函数的第一个性质就是单调性,由图可知,指数函数的单调性由a的取值范围决定的,当a>1时,指数函数是单调递增函数,当0<a<1时,指数函数是单调递减函数。
  2. 函数第二个性质就是奇偶性,但从图像上看,并没有奇偶性,就不讨论了。
  3. 函数第三个性质就是周期性,同理,从图像上看,也是没有周期性,也不做讨论了。
  4. 函数第四个性质就是对称性,从图像上看,也没有对称性,也就不讨论了。

这就是从函数的性质上面进行讨论的,除此之外就需要从指数函数自身的性质进行讨论了。

  1. 指数函数的所有的图像都过一个定点(0,1),即x=0时,y=1
  2. 第二个专属性质就是单调性由a的取值范围决定的。

批注:

读者有什么不懂的可以留言,想要知道什么高中解题经验可以给作者留言啊!

关注!关注!关注!重要事情说三遍

深入理解指数函数 – 指数函数的图像和基本性质

上一篇文章我们介绍了对数函数,本文介绍指数函数,大家可以搭配着看,以期加深对它们的理解。

指数函数是几个非常重要的初等函数的之一,本文从指数运算的基本性质出发,介绍指数函数的定义,图像特性,单调性,及其反函数等。

指数运算的基本性质和范例

类似于以下形式的函数:

(a>0且a≠1)

被称作指数函数,其中 (a>0且a≠1)。

a>1时的函数图像:

a>1时的函数图像;定义域:x ∈ R;值域:y> 0;过定点(0, 1);单调递增

a<1时的函数图像:

a<1时的函数图像;定义域:x ∈ 0;值域:y> 0;过定点(0, 1);单调递减

指数函数的图像特性

底数互为倒数的指数函数的图形,关于y轴对称

指数函数:

由对数函数的定义,可得:

由反函数的定义,将 x, y 互换,得到①的反函数:

a>1时,指数函数和其反函数的图像如下图:

a>1时

a<1时,指数函数和其反函数的图像如下图:

a<1时

本文作者及来源:Renderbus瑞云渲染农场https://www.renderbus.com

点赞 0
收藏 0

文章为作者独立观点不代本网立场,未经允许不得转载。